
NASA-CR-200/_5

Generically Used Expert Scheduling
System

Guess

User's Guide
Version 1.0

American Minority Engineering Corporation
10422 Armory Avenue

P.O. Box 509
Kensington, Maryland 20895

March 31, 1996



Guess User's Guide

Table of Contents

1.0 Introduction 1

1.1 Identification of Document 1

1.2 Scope of Document 1

1.3 Purpose and Objectives of Document 1

1.4 Document Status and Schedule 1

1.5 Documentation Organization 2

2. 0 Related Documents 2

2.1 Parent Documents 2

2.2 Applicable Documents 2

2.3 Information Documents 3

3. 0 Overview 3

3.1 Background 3

3.2 Major Features of GUESS 4

321 Suggestion Tabulator (Sugtab) 4

3.2.2 Hill Climbing 5

3.2.3 Genetic Algorithm 5

3.2.4 User Interface Design 9

3.2.5 Resource Modeling 10

3.3 Performance of GUESS 13

3.4 Future Direction of GUESS 13

3.4.1 Developing Database Interfaces to GUESS 13

3.4.2 Categorize Different Scheduling Problcms and Dcvelop Generic Scheduling Models for Each Within
GUESS 14

3.4.3 Develop a Test Suite of Differeut Types of Scheduling Cases to Run Against GUESS Each Time a Nexv

Scheduling Technique is Included in GUESS 14

3.4.4 Improved Methods for Customizing the Report Generation Function of GUESS 15

3.5 Summary
15

3.6 References
15

4. 0 Installation 16

5. 0 Working with Guess

6. 0 Using the Guess Scheduling Program

6.1 Viewing the Schedule

6.2 Event List Pane

17

17

17

18

6.3 Gantt Chart Pane 19

6.4 Adding/Editing Events

6.4 1 Editing the Event

6.4.2 Editing the Constraints

20

21

22



Guess User's Guide

6.4.3 Editing the Resource Constraints

6.5 Resources

25

25

6.6 Scheduling 26

6.7 Saving Your Work

6.8 Printing the results

7. 0 Abbreviations And Acronyms

8. 0 Appendices

28

28

3O

31

Appendix I 31



Guess User's Guide

Table of Figures

Figure 1 - Chromosome Fncoding _

Figure 2 - Prmh_cing a New Generation

- Mutation Rates

- Crossover Probabilities -

- Alain Window-l[enu

- k)le ()pen DiahJg

- A'ckedule ffTndow

- List Pane

Figure 3

Figure 4

Figure 5

b )_,ure 6

Figure 7

Figure 8

Figure 9 - Gantt ('hari Pane

Figure 10 - 1 "iew .ilenu

Figure 11 - Xati,_7'_zction Dialog

Figure 12 - Event Dialog

Figure 13 - Editing ())nxtraints

tv_ure 14 - Entering a Mere Constraint

[;i,ffure 15 - Editing Remmrce ('onstraints

l_)_ffure 16 - Re._wurce Graph

Figure 17 - Re,_vmrce Ah'nu

Figure 18 -Re._wurce Dialog

Figure 19- Ncheduling Alethodx

Figure 20 - Statistics" Diah)g

Figure 21 - Resource ('on/licts

Iqgure 22 - tqle A'ave As Dialog .

Figure 23 - Print Dialog

6

7

8

9

17

17

18

19

19

20

20

21

24

25

25

26

26

26

27

28

28

29

iii



Guess User's Guide

1.0 Introduction

1.1 Identification of Document

This is the User's Guide for the operation of GUESS (Generically Used Expert Scheduling

System) NASA Project NAS5-38062 The purpose of the User's Guide is to provide end

users (rather than system operators or administrators) with instructions explaining how to

execute the software effectively.

1.2 Scope of Document

GUESS is a generic expert scheduling system. Pinedo [1] suggests important features of a

generic scheduler which have been incorporated into GUESS such as:

1. automatic scheduling routines to generate a "first" schedule for the user;

2. user interface that includes Gantt charts and enables the human scheduler to

manipulate schedules manually;

3. diagnostic report generators; and

4. a variety of scheduling techniques included in the generic scheduling toolkit.

The GUESS User's Guide contains all the information needed to load, initialize, and

execute GUESS on an IBM PC or compatible computer using Windows. This document

adheres to the NASA Software Documentation Standard Software Engineering Program

Standards (NASA-STD-2100-91) for a User's Guide.

1.3 Purpose and Objectives of Document

The purpose of the document is to provide a well organized, easy to use guide for the user

of the GUESS software system. It is intended to guide the user through the steps

necessary for installation, start-up, initialization, operation, and termination of the GUESS

program. This document should help the user in running GUESS and applying GUESS

for solving a scheduling application.

1.4 Document Status and Schedule

Version 1.0 is the first publication of the GUESS User's Guide. GUESS has been

developed over a two year period from April 1, 1994-March 31, 1996. During these two

years, GUESS was designed, encoded, and tested on a number of NASA and other

scheduling applications. The current version of GUESS, running on the IBM PC or PC

compatible Windows 3.1 or Windows '95 environment, was developed using Borland's

C++ 4.5 and Microsoft's Visual C++ 1.5.



Guess User's Guide

1.5 Documentation Organization

This document is organized into 8 sections (including appendices).
each of the sections follows:

Section 1

Sec/iou 2

,_,clio// 3

Section 4

A short description of

Identifies the document and states its purpose and status.

Identifies related documents.

Provides an overview of the purpose and functions of GUESS.

Documents the installation procedures and initialization process of the software

system for the new user.

Sectiou 5 Presents the software startup and termination procedures.

Sectiou 6 Describes each function with its corresponding operation.

Section 7. Contains a list of abbreviations and acronyms used in this guide.

Sectiou 8 Contains appendices related to this document.

2.0 Related Documents

2.1 Parent Documents

None

2.2 Applicable Documents

1. NASA SBIR Phase 1 Final Report, Methodology and Mapping Between Problem

Solving Requirements and Solution Scheduling Approaches in Mission Planning Expert

Scheduling Systems, June 1993, AMEC/Jay Liebowitz, Kensington, Md.

. Scheduling, Objectives, Requirements, Resources, Constraints and Processes: Implications

for a Generic Expert Scheduling System Architecture and Toolkit, June 1994, AMEC/Jay

Liebowitz, Kensington, Md

3. Conceptual Design of a Generic Expert Scheduling System Architecture and Toolkit,

August 1994, AMEC/Jay Liebowitz, Kensington, Md

2



Guess User's Guide

2.3 Information Documents

. Looking Ahead Toward Testing of GUESS (__Generically Used Expert Scheduling

System), 1995, white paper, AMEC/Alisa Liebowitz, Jay Liebowitz, Chapman Houston,

Vijaya Krishnamurthy, Kensington, Md.

. "Intelligent Scheduling: Issues, Trends and Research Directions", white paper (based on

an invited talk at the Goddard AI Conference, May 1995), AMEC/Jay Liebowitz,

Kensington, Md.

. "GUESS; Generically __UsedExpert _Scheduling _System", Proceedings of the Third World

Congress on Expert Systems, Cognizant Communication Corporation/ISIS, New York,

Feb. 1996, AMEC/Jay Liebowitz, Alisa Liebowitz, Vijaya Krishnamurthy, Chapman

Houston, Janet Zeide.

. "Market Research and Program Report Requirements for Building a Generic Expert

Scheduling System," March 10, 1995, prepared by James Martin Strategies North

America Inc., prepared for American Minority Engineering Corporation

3.0 Overview

3.1 Background

Scheduling is a prevalent function that is omnipresent throughout many industries and

applications [ 1-4]. A great need exists for developing scheduling toolkits that can be

generically applied to a number of different scheduling problems. To meet this need, more

research is warranted for developing a state-of-the-art generic constraint problem-solver

as related to scheduling.

Scheduling involves accomplishing a number of things that tie up various resources for a

period of time. A scheduling problem can be defined as a set of constraints to satisfy. A

solution to the scheduling problem is a set of compatible scheduling decisions that

guarantee the satisfaction of the constraints [5]. Guaranteeing the compatibility of the

decisions made is the role of constraint propagation. The order in which decisions must be

made needs to be determined. In the NASA environment, scheduling is a critical area.

According to the Engineering Services Group of McDonnell Douglas, in the next decade

scheduling will be required for 365 days of the year and could take 2,000 to 3,000 people

working continuously.

NASA has recognized a need for developing a generic scheduling toolkit. Toward this

goal, NASA has developed such scheduling toolkits as PARR [6], AMP [7], Plan-It [8],

and others [9]. Scheduling is a critical function for NASA Shuttle flights, payloads, and



Guess User's Guide

crew members or scheduling scientists to use the NASA-supported satellites. The

development of a generic expert scheduling system could ultimately be applied to many

NASA and other scheduling applications. To better meet this goal, the American Minority

Engineering Corporation (AMEC), has through NASA support, developed a generic

expert scheduling system architecture and toolkit known as GUESS (Generically __Used

Expert _Scheduling _System).

GUESS has been designed to take advantage of an object-oriented, hierarchical

architecture. GUESS contains two major levels of schedulers. The low-level schedulers

are composed of different scheduling methods, mainly heuristic-based and

optimization/algorithmic-based The high-level scheduler, called the metascheduler,

coordinates the activation of the low-level schedulers and injects any new information that

is pertinent to the scheduling problem.

GUESS is designed to aid the human scheduler and to keep him/her in the loop.

GUESS is a decision support aid as opposed to an automated replacement for the human

scheduler. GUESS is programmed in C++ and runs on an IBM PC Windows

environment.

An object-oriented approach has been used for GUESS in order to maximize the

reusability and corresponding generality of GUESS. As an example, GUESS can schedule

2,551 events and over 14,000 constraints in under 45 seconds on a Dell 486 computer.

3.2 Major Features of GUESS

3.2.1 Suggestion Tabulator (Sugtab)

The input file is first read. Depending on the technique chosen, the scheduling of the

events takes place and the overall schedule is generated as output. Events are scheduled

one at a time starting with an event of highest priority. To start, an event is scheduled by

asking all of its constraints for their suggestions. A suggestion tabulator is given to an

event, and the event passes it to each of the event's constraints. Each constraint can make

zero or more suggestions to the suggestion tabulator, aider which it can deduce the best

beginning and ending times for the event based on the accumulated suggestions. The

sugtab for an event is of four types: beginning range, ending range, beginning and ending

equal suggestions. The range is controlled by greater and less than suggestions. Some

constraints suggest a specific time for the beginning or end. An equal tabulator tabulates

the equal condition suggestions and returns the value. The range tabulator tabulates the

range by keeping a low and high limit.



Guess User's Guide

3.2.2 Hill Climbing

This is another technique available for scheduling events in GUESS. The initial beginning
time and satisfaction of the event is assumed to be the best and a non-linear search for

better values is done on both sides of the initial value of time to search for better time and

satisfaction. As the search transverses through either sides of the hill, the exponential

increment for the time change can be adjusted for speed improvement. Similar to other

techniques, the satisfaction of a particular event is calculated based on the satisfaction

level of all its corresponding constraints. The higher the satisfaction level of an event, the

happier it is in the schedule.

3.2.3 Genetic Algorithm

Genetic algorithms attempt to mimic the action of the "natural selection" process within

living organisms to improve the characteristics of the species and to allow them to become

better adapted to their environment. Genetic algorithms attempt to mimic this process

within computationally difficult problems to arrive at some near optimum solution of the

problem at hand. Genetic algorithms start with an initial population composed of some

mixture of solutions that form the initial basis from which to begin a search for the best

solution. This starter set of solutions is generally obtained in some arbitrary manner.

The algorithm then cross breeds this initial set of solutions combining the genes in the

parent chromosomes to produce a child inheriting some characteristics from both parents.

Random mutations are introduced during the breeding process to prevent the population

from converging on some local maximum prematurely. Ranking of the solutions

(chromosomes) is done using a fitness function which returns a positive number reflecting

the relative value of the solutions. The higher the fitness number, the better the solution is.

At each generation, the least fit solutions are removed from the gene pool. Eventually, we

are left with a set of good solutions, from which the best solution is selected.

All of the specific domain knowledge required to implement the genetic algorithm is

contained within the fitness function. This is an advantage over other AI techniques which

require a large body of domain specific knowledge to be constructed. This information is

time consuming to collect and limits the generality of the method.

Guess Implementation

Implementation of a genetic algorithm approach for Guess is done using the Evolutionary

Object System (EOS) developed by Man Machine Interfaces, Inc. EOS is a C++ class

library for creating genetic algorithms. The first decision that must be made is how to

encode the schedule information as a chromosome. The standard encoding used in most

classical genetic algorithm work is the binary encoding. Each gene within the chromosome

is a series of bits The genes are linked together to build a long chromosome (See Figure

1).



Guess User's Guide

Start Time
for event

/ _.J/

/'_i -j

///

Chromosome
encoded for
a schedule

/,
/;

Figure 1 - Chromosome Encoding

EOS supports a variety of other possible

encodings; however, the binary encoding is

the most generic and was also recommended

by the EOS vendor; so the decision was

made to use the binary encoding in the

implementation of a genetic algorithm within

Guess. The only significant variable

information associated with the schedule is

the time at which each event is scheduled to

occur. Guess assumes that the duration of an

event is fixed and determined by the user at

the time the event is entered; therefore, the

only significant information that must be

associated with the event is the starting time

of the event. Each event has a specific gene

within the chromosome. The gene occupies
a series of bits of size/7_me which is

sufficient to record the starting time of an
event.

The standard seeder supplied with EOS

creates the initial population in a random

manner. This approach does not take

advantage of any re-ordering that may have

occurred previously and always starts from a clean slate. A new class (TGtlessSeeder) was
derived from the It¢a_dornSeeder class. This class makes the first member of the

population the original starting schedule and then randomly populates the remainder of the
chromosomes.

A special class, TSchedPheno was derived from the abstract class TPhenotype to provide

translation between the genotype (chromosome) and the expression of the genotype or

phenotype In the case of Guess, the expression of the genotype is the starting times of

each event within the schedule.

TguessC, A was derived from the 7BasicGA class to allow some customization and

statistics reporting on the genetic algorithm This class maintains a copy of the best

individual obtained so far as well as keeping track of the satisfaction scores and number of

unscheduled events in each generation.

The calculation of fitness comprises the core of the genetic algorithm. The basis of

calculating the fitness was chosen to be the satisfaction factor. A member variable that

points to a genotype was added to the cSchedule class. The other basic change was in the

calculation of the event times. Normally in Guess, the event times are extracted from



Guess User's Guide

internal member variables within the event object. This is not suited for processing the

genetic algorithm, as the genetic algorithm requires evaluating the fitness of a large

number of competing schedules for each generation. The mBeg member function was

therefore modified to check the cSchedule and ifa genotype was provided, the event

starting time was extracted from the genotype rather than using its internal value. If no

genotype is provided, then the event times are calculated in the usual manner.

The mEnd and inDuration member functions were similarly modified to retrieve their times

based upon the beginning time obtained from mBeg. This proved to be a rather elegant

and efficient method of adapting the original Guess algorithms to work with a genetic

algorithm with a minimal amount of change and without breaking any of the previously

debugged and tested code.

The fitness function is based on using the schedule satisfaction normalized to a positive

number. A division by the number of events that cannot be scheduled (due to resource

conflicts) is done to impose a stiff penalty to resource constraint violations. Without the

penalty, the genetic algorithm tends to produce solutions with unschedulable events with

alarming frequency.

An additional menu item was added to the Schedule menu to allow selection of either the

suggestion tabulator or genetic algorithm as the solution method by checking the

appropriate item in the menu. To aid in the debug and optimization of the algorithm, a few

additional dialog boxes and menu items were added. First, a dialog was added to allow the

genetic algorithm parameters to be changed interactively. This was convenient as it was

anticipated that a large number of scenarios would be run while varying the basic genetic

algorithm parameters to try and find an optimum combination. Additionally, a debug

dialog was added allowing the user to view the results of the genetic algorithm on a

generation by generation basis.

P1
I

I

i
i

/I
ii i

i

Mother Template

!!!!!_Eiiiiili'_l

Father

i
l
l

• !

==
Chlld

Figure 2 - Producing a New Generation



Guess User's Guide

After a little experimentation, it appeared that the best approach appeared to use an elitist

replacement strategy with a uniform crossover breeding approach. The elitist replacement

strategy replaces the worst individuals in the next generation with the best individuals from

the current generation. This strategy was used because it appeared during preliminary

analysis that some of the good solutions were being lost in the reproduction process.

Uniform crossover mates two chromosomes by introducing a randomly generated

crossover mask. Genes represented by bits set in the mask are taken from the

mother;genes represented by cleared bits in the mask are taken from the father. This

appeared to give the best results in the trials.

One important thing to remember is that genetic algorithms by their very nature are

random and do not tend to yield reproducible results. This was borne out in the testing.

Whereas, given the same input, the suggestion tabulator always arrived at the same

answer; the genetic algorithm usually yielded widely varying answers even though the

satisfaction values may have been similar. Various studies were done on a 50 event

schedule to determine the effects of varying the mutation rate and crossover probabilities.

These results are reflected in Figures 2,3 and 4. Neither one of the graphs shows any clear

cut trend or optimum especially in the case of mutation rate. It appears, however, that the

genetic algorithm approach is useful for 100 events or less.

Effect of Mutation Rate

=
,m

5710 i = •5700 ,
5690 ..........

5680 ..... •
5670- =

566oj
5650 _ .......

0 0.1 0.2 0.3

Mutation Probability

Figure 3 - Mutation Rates

!

0.4

The best values

appear to be 0.05
for the mutation

rate and 0.9 for

the crossover

probability

although there

appears to be such
a wide variation in

the numbers that

the use of the

values as optimal

appears

questionable. The genetic algorithm yields very tight compact schedules with events
scheduled in the minimum time span required. By contrast, while satisfying the schedule

constraints, the traditional methods, namely suggestion tabulator and hill climbing tend to

do so by spreading out the schedule and increasing the schedule makespan.



Guess User's Guide

Effect of Crossover Probability

e-
.o
O
(U

_3

u)

5800!
5780T

5760:

5740_

5720-

5700_
=

5680 _

0 0.2

/

0.4 0.6 0.8

Crossover Probability

L

Figure 4 - Crossover Probabilities

The length of time that the genetic algorithm takes is due mainly to the need to calculate

schedule satisfaction for multiple schedules each generation. Compounding this is the

requirement to process many generations before arriving at the solution. By contrast, the

hill climbing and suggestion tabulator deal with the schedule in a much more localized

manner. Each event has its satisfaction calculated individually and is then moved

accordingly resulting in fewer satisfaction calculations in arriving at a final solution.

3.2.4 User Interface Design

The displays must be familiar and easily recognized by the users. They must also allow the

user to grasp any change in the data and the significance of that change instantly.

To aid in user comprehension, GUESS is implemented in the broadest terms of flexibility.

Its unique design allows the user to alter the organization of the GUESS display and

desktop. By altering the look of GUESS to one that is more familiar to the operators, one

can save much of the time they would spend adapting to the new system. This would also

significantly reduce the learning curve for new operators.

To that end, we have put considerable resources behind the development of Graphical

User Interfaces, such as Visual Basic Xtensions (VBX). These systems allow us to

display information in simple two or three-dimensional charts of many different types.

This will allow the user to "customize" the interface to their own personal tastes. In a

mission-critical atmosphere, the user will be able to select the charts that he or she can

best understand quickly, making the interface far more useful. GUESS will remember

those changes and present the interface in that fashion until told otherwise. So once the

system is "customized", there is no need to repeat the effort. For a system with multiple

users, multiple environments can be set so that each user would have his/her own
individual "look" if he/she wished.

9



Guess User's Guide

GUESS avoids the complexity inherent in many scheduling systems by letting the user

decide how much of the system he wishes to use. Instead of having to wade through a

thick book of directions, GUESS is designed in an intuitive fashion and conforms to the

GUI standards laid out by the industry

GUESS is designed with a stair-step approach to learning. From the start, the user can

run the system on pre-set defaults, if that is what he wants; there is no need to change

anything.

This is the first level of GUESS operation. When he wishes to add other options, the

functions in GUESS can be added one at a time so a new user doesn't get overloaded with

all the changes. They can also be added in groups for power-users who are already

familiar with the system. This puts the complexity of the system in the hands of the user.

The principal idea behind the GUESS system was to build a system so flexible that it

would fill a broad spectrum of needs. This flexibility is implemented in the "Loosely

Bound" architecture that comprises the GUESS system. Instead of having one rigid

program, GUESS relies on a series of programs related by a message loop.

GUESS capitalizes on this open-architecture by allowing for the addition of other

programs to be added to the message-loop. New programs or additional modules can be

added to the system simply by loading them to the GUESS directory. The main GUESS

program will scan the local directory and link all the modules found. If a specific module

is needed, it will give a warning about the omission.

By using the Object-Oriented Approach, GUESS allows the user to become an active part

of the system and alter major parts of the interface. This segmenting of the program code

makes for a more compact program with less extraneous code. This eliminates a lot of

operational overhead and helps the memory burden on the computer. Only the sections

that are needed have to be loaded into the system.

3.2.5 Resource Modeling

Almost all scheduling problems depend in part on the availability of the necessary

resources being present at the time of execution of a scheduled event. Some problems are.

primarily resource constrained while in other problems there are a sufficient abundance of

resources such that resources do not seriously constrain the scheduling. For GUESS, it

was deemed necessary to add a generic resource model, capable of handling most

resources that could conceivably be used in scheduling situations.

10



Guess User's Guide

For purposes of scheduling there appear to be two genetic types of resources that could

be used to model most resources used within a scheduling scenario. These are termed

"Binary" and "Depletable" resources respectively. A binary resource is a resource of

which a fixed amount is available at any given time, the resource is not depleted or

consumed by the events utilizing it. An example of a binary resource might be the crew

members on a space shuttle mission. Crew members may be utilized on a specific task but

are not depleted or destroyed by the event. They are immediately available to tackle

another task on completion of the present task. The function of the scheduling algorithm

is to make sure that these binary resources are not overcommitted at any given point in
time.

Depletable resources, on the other hand, are in fact consumed by tasks using them. As

different events occur, these events utilize a portion of the resource until the resource is

completely consumed and there is nothing left to consume. As well as consuming the

resource, it is possible for certain events to replenish the resource. Typical systems that

might be modeled by this approach include the consumption of propellant by a spacecraft

as a result of various maneuvering events or the drain on the spacecraft battery caused by

the operation of electrical equipment. In the case of the propellant, it is unlikely that

events would occur to replenish the resource--in the case of the battery, recharging could

occur by orienting the solar panels toward the sun.

The function of the resource scheduler is to schedule the activities to prevent depletion of

the resource before all of the required activities are complete. In the case of resources

that may be recharged, the scheduling algorithm must schedule sufficient recharging

events between uses to keep adequate resources in hand to perform the

necessarvconsuming activities. This involves alternating recharging and consuming

activities in some pattern to sustain the resource.

These two types of resources are the most genetic resources that can be used within a

scheduling context; however, it was also felt necessary to allow the addition of custom

resource models, that could be user-designed yet easily integrated within the GUESS

scheduling engine. These custom models could be integrated as Dynamic Link Libraries

(DLL's) and attached on the fly to the GUESS executable. This would allow unlimited

flexibility for GUESS and would relieve the designers of having to anticipate unusual

resource models or bloating the code in trying to incorporate every conceivable resource

model within GUESS.

This choice of models provided a suitable methodology for modeling of resources within

GUESS while providing plenty of room for future expansion. The next decision was the

scheduling algorithms to be used in satisfying the resource constraints and their

relationship to the algorithms already being used to schedule other constraints within the

schedule. Rather than attempting to build an external resource model, it was felt to be

beneficial to integrate the resource constraint satisfaction mechanism within the existing

constraint satisfaction methods.

11



Guess User's Guide

There are two reasons for deciding upon this approach:

Resource constraints are in fact just another form of constraint and it is beneficial

to treat them in the same manner as other constraints from both a computational

efficiency stand point as well as eliminating the need for doing several iterative

calculations going from resources to constraints, in a back and forth motion, until

the optimal solution to both problems is found.

Having a single algorithmic model makes for a very elegant solution. In fact the

same optimization techniques can be used--the difference between the two types of

constraints lies in the computation of its satisfaction score. The optimization

algorithm need not be different. The "satisfaction criteria" is the only difference
between the two.

The main emphasis in implementing a resource model for GUESS becomes a matter of

determining the appropriate functions to use in computing resource satisfaction. The

resource satisfaction should be a low value indicating a lack of satisfaction and forcing the

offending event to b_rescheduled if the event makes the resource usage exceed the total

allowed. The resource usage if below the maximum allowed is an acceptable state of

affairs and should give a satisfaction rating consistent with this. For a binary resource,

maximum resource usage should be encouraged (as long as the maximum limit is not

exceeded), since this will tend to decrease the schedule span and make use of the resource.

For a depletable resource, the situation is not quite so clear cut, since once a resource is

gone, it must be either recharged (if it can be) or the resource is unusable for future

activities. Therefore, the same positive satisfaction value is returned for all depletable

resources whose usage is below the limit. A further simplifying assumption was made that

resource usage is constant throughout the duration of the event. To get a profile of

resource usage, resource usage is sampled throughout the duration of each event. A

resource constraint satisfaction is obtained for each resource utilized by an event. A

binary resource constraint will compute usage by integrating the resource usage over the

time period of the event.

The algorithm first discards all events which do not overlap with the time period of

interest. Then an adjustment is performed to obtain an adjusted average over the period

of time for which the event overlaps. The implicit assumption is made that resource usage

is linear over the event duration and multiple parallel events affect depletion in a linear

additive fashion

Usage for a depletable resource is calculated in a similar manner as that for a binary

resource with the principal difference being that all events scheduled prior to the beginning

12



Guess User's Guide

of the time period of interest must also be summed. In this instance, an overlapping event
is defined as an event whose start time is less than the end of the interval of interest.

To allow the resource model in GUESS to be readily extensible a feature for allowing the

addition of custom resources was incorporated. The most flexible approach to doing this

is to allow the user to add a custom dynamic link library which can be linked on the fly to

the GUESS application. Doing so requires a standard application programming interface

(API) to be developed to allow communication between the DLL and the GUESS engine.

This requires a definition of entry points and types to be utilized within the DLL. The

GUESS executable loads the DLL using the standard Windows function LoadLibrary

function and then attempts to load each of the exported entry points by name. GUESS

loads each of the entry points by name rather than the number even though loading by

number is slightly more efficient--loading by name is easier to use and manage. As

GUESS looks up the function pointers when the DLL is initially loaded, this causes an

imperceptible performance penalty. If GUESS either cannot load the library or cannot

find one of the required functions, then an error message is reported.

When a resource is over committed and needs to be rescheduled, the suggestion preferred

is to reschedule the current event to occur just after the last event using the resource.

Since events are processed in priority order, this forces lower priority items to be

scheduled later than high priority events. A more sophisticated means of producing

suggestions could be included as a later enhancement; however, for the test cases

considered, the suggestion strategy yielded acceptable results.

3.3 Performance of GUESS

GUESS has been tested in a number of applications. For NASA applications, such as

scheduling satellite experimenter requests to use the NASA supported satellites, GUESS

can schedule, for example, 2,551 events and over 14,000 constraints in 45 seconds on a

Dell 486 computer. This performance corresponds well with other NASA expert

scheduling systems that can schedule up to 6,000 events in 2.5-3 minutes.

3.4 Future Direction of GUESS

3.4.1 Developing Database Interfaces to GUESS

One of the major future efforts for GUESS is to develop database interfaces to GUESS

tk_r ease of inputting the events, constraints, and resources. Currently, the user has to

enter the events and associated resources and constraints into GUESS one-by-one. For

large scheduling cases (especially in the NASA environment of several thousand

13



Guess User's Guide

events), this could be a time-intensive effort. For commercialization of GUESS, there

is a need for establishing database links with popular database packages (e.g., Access,

etc.) (and even spreadsheet packages like Excel) for an efficient way of entering the

data for scheduling. We currently have a test case generator to facilitate the generation

of multiple events, constraints, and resources. However, for customization purposes,

establishing the database/spreadsheet links arc essential for enhancing GUESS during

the Phase 3 commercialization effort.

3.4.2 Categorize Different Scheduling Problems and Develop Generic Scheduling Models

for Each Within GUESS

In tcsting the current version of GUESS, various types of scheduling problems were

used. These included: an Army strategic scheduling problem of assigning units in a

deployed theater; scheduling Army battalion training exercises; scheduling City of

Rockville Pee Wee and Midget baseball games; scheduling Department of Computer

Science courses and corresponding sections for Montgomery College; and scheduling

NASA experimenter requests to use NASA-supported satellites. We have included

some scheduling frameworks within GUESS to facilitate different types of scheduling

problems (e.g., timetabling, game scheduling, classroom scheduling, job shop

scheduling, etc.). However, we need to further develop these frameworks and include

within GUESS other frameworks based on the type of scheduling problem. In this

manner, GUESS will include the framework and user interface for different types of

scheduling problems. This should also allow improved efficiency in inputting the

scheduling data for a particular class of scheduling problems.

3.4.3 Develop a Test Suite of Different Types of Scheduling Cases to Run Against GUESS

Each Time a New Scheduling Technique is Included in GUESS

We currently have a useful test generator that helps in developing test cases for

GUESS. However, we need to have a more complete test suite of different types of

scheduling cases to run against GUESS each time a new scheduling technique is

included in GUESS. This test suite should include different classes of scheduling

problems that are heterogeneous in order to test the new scheduling methods within

GUESS for effectiveness and efficiency. Manufacturing scheduling test cases need to

be added to our test suite.

14



Guess User's Guide

3.4.4 Improved Methods for Customizing the Report Generation Function of GUESS

Through the Gantt.VBX in GUESS, we have some control in customizing the

scheduling report. We can perform sorting by event name, date, resource, etc., but we

need to have other options available for customizing the scheduling report for the user.

For example, the athletics scheduler may want to have the scheduling report by

baseball field, team, player, week, game, etc. and GUESS should be flexible enough to

handle these demands. Customizing the report generation function for the user will also

help in user acceptance of GUESS.

3.5 Summary

In the coming years, the major trends in intelligent scheduling systems are:

• the majority of the AI approaches to scheduling will continue to be constraint-

based;

• movement will continue toward expert scheduling system shells/generic constraint-

based satisfaction problem-solvers;

• interest will expand in object-oriented/agent-based programming paradigms and

hierarchical architectures used in intelligent scheduling systems;

increased use will occur of hybrid intelligent systems for scheduling (knowledge-

based, neural networks, fuzzy logic, genetic algorithms, optimization/operations

research, etc.)

We feel that GUESS is an effort that supplements well these future directions in intelligent

scheduling. More testing for generic scheduling qualities of GUESS will be conducted in

the near term, as well as expanding the number of scheduling techniques in the GUESS

toolkit.

3.6 References

1. Pinedo, M. (1995), Scheduling Theory, Algorithms, and Systems, Prentice Hall,

Englewood Cliffs, NJ.

15



Guess User's Guide

2. Morton, T. and J. Pentico (1993), Heuristic Scheduling Systems, John Wiley, New York.

3. Zweben, M. And M. Fox (eds.) (1994), Intelligent Scheduling, AAAI/MIT Press,

Cambridge, MA.

4. Brown, D. And W. Scherer (eds.)(1995), Intelligent Scheduling Systems, Kluwer

Publishers, MA

. Noronha, S.J. and V V. V Sarma (1991 ), "Knowledge-Based Approaches for Scheduling

Problems: A Survey, "IEEE Transactions on Knowledge and Data Engineering, IEEE,

Vol. 3, No.2, June.

6. NASA Goddard Space Flight Center (1994), Proceedings of the 1994 Goddard

Conference on Space Applications of Artificial Intelligence, Greenbelt, Maryland, May.

7. Stolte, A. (1994), An Object-Oriented Approach to Scheduling, AI Expert, Miller

Freeman Publications, San Francisco, CA.

, Lee, JK., M. Fox, and P. Watkins (1993), Special issue on "Scheduling Expert Systems

and Their Performances, "Expert Systems With Applications: An International Journal (J.

Liebowitz, Ed.), Elsevier/Pergamon Press, New York, Vol 6, No.3.

. Liebowitz, J., P. Lightfoot, and P. Dent (1991), " Conflict Resolution Strategies in Expert

Scheduling Systems: Survey and Case Study, "The Knowledge Engineering Review,

Cambridge University Press, England, Vol 6, No.4.

4.0 Installation

Guess consists of a main program file guess.exe and three dynamic link libraries and one

Visual Basic extension (VBX) file. Guess is designed to run under the Microsoft Windows

3.1 operating system. The program file guess.exe should be installed in the program

directory (typically c:\guess although the user may choose to install in any directory that is

convenient) and the DLL and VBX files should be installed in the windows system

directory (typically c:\windows\system but may vary if a custom installation of MS

Windows has been done). The files are as follows:

Program Directory (i. e. c."_,guess)

guess, exe

Windows System Directory (i.e. c: '_wmdows'_..system)

ctl3dv2.dll

eos20.dll

ganttvbx.vbx
tabsctl.dll

16



Guess User's Guide

A program group and icon should be created for Guess. Refer to the MS Windows user

manual for details on creating program groups and icons within the Program Manager

5.0 Working with Guess

Exit

! SNAME.SCH

_2 TEST75._°CH

31TEST.SCH

4 O :_d E C_ASE RALL_BASETE ST.I N

Figure 5 - Main Window Menu

Guess may be invoked by double clicking on its

icon in the Program Manager or using the run

command in either the File Manager or Program

Manager. The main Guess window then appears.

Guess is a Multiple Document Interface (MDI)

application meaning that multiple schedule

windows can be displayed within the main

window. This makes it easy to compare different

alternative schedules and scheduling algorithms that can be used within Guess. The menu

that appears initially in the main window is shown in figure 5. Directory
Structure

The user may choose New to

get a blank schedule on which to

begin entry of data for a new

schedule or choose to open an

existing schedule. The four most

recently accessed schedules

appear on the bottom of the

menu for easy selection. The

user may choose to open any

arbitrary schedule using the

File List -_

Figure 6 - File Open Dialog

Open... menu selection bringing up the file dialog (see figure 6). A file may then be

selected using the drive and directory structure boxes to navigate and locate the desired

scheduling file, Guess schedule files have the extension, sch by default although the user

may override this selection by choosing "All Files" in the "List Files of Type" drop down
list box.

The network button appears if Windows is being run in a network environment and allows

the user to connect network drives to access Guess schedule files stored remotely.

Clicking on the OK button opens the file for editing.

6.0 Using the Guess Scheduling Program

6.1 Viewing the Schedule

The schedule appears in a three paned window as shown in figure 7. In the upper left hand

corner appears a tabular listing of the events in the schedule. In the upper right hand

17



Guess User's Guide

section the schedule appears in gantt chart form. In the bottom of the window the

resources appear as a graph of resource usage over time.

Event List

Ganfl Cha_

Adjustable

Sashes

Figure 7 - Schedule Window

Resource Graph

Each of the three panes is easily adjustable by dragging the sashes located on the pane

boundaries to the desired location This allows any of the window panes to be adjusted to

fit viewing preferences.

The individual panes are also scrollable allowing viewing of any portion of the display

even when the whole display is too large to fit within the window pane

6.2 Event List Pane

The event list panes gives a tabular listing of the events (see figure 8). Shown in the event

pane is the event name, description, start date and time, end date and time, duration and
satisfaction. Satisfaction measures how well the event as scheduled meets the constraints

placed upon it. The satisfaction value ranges from -127 to +127 with a +127 meaning that

all of the constraints are perfectly satisfied.

18



Guess User's Guide

Event Description StaO End D ulation I Satisfaction11
I

1 E9 FASTSEALIFTSHIPSAVAIL 12/1/95313:00PM 12/2/95 3:13: 00 PM Days0Hows -20

_" E8 BEGIN PHASE II OF CRAF 1211/953:13:00PM 12/2/95 3:13:00 PM Days0Hows -15

3 E7 MOBILIZECRAFPHASEI 1211/953:13:00PM 12/2/953:13:00PM Day=0Hotm_ 42

4 E67 AIRCRAFIAVAILABLE,N*9 12Pl/9531300PM 12/21953:13:00PM Day_0Ho_s 3

5 E6G AIRCRAFT RETURN TRANSIT TO US. 1DAY 12/1/9531300PM 1212/953:13:00PM Da_0Ho_s 127

8 E65 FW2EQUIPMENfANDPERSONNELINPLACE@N+11 12/1/953:1300PMI1212/953:13:0OPM Da_s0Hows -56

7 E64 ASSEMBLE UNIT, 3 DAYS 12/1/95 3:13:00 PM 1214195 3:13:00 PM 3 Days 0 Hours -56

8 E63 UNLOAD FW2. 1 DAY, N+8 12/1/95 3:13:00 PM 1212195 :_13:00PM 1 Day_0 Houls I 127

9 E62 TRANSIT TIME TO KOREA, 1 DAY 1211/9531300PM 12121353:13:00PM DaysOHou_s 127

10 E61 LOAD FIGHTERWIND #2. 1 DAY. WEST COAST. N*6 12/1/95 31300PM 112121953:13:00PM Day=0 Hours -63

11 E60 V/AIT FOR AIRCRAFT AVAILABILITY. 4DAY$ 12/1/953:13:00PM 12/5/953:13:00PM 4Days0Ho_s 59

12 E6 MOBILIZESEALIFT 12/1/953:1300PM!I2/21953:lS:00PM Day_0Ho_rs 127

13iE56 AIRCRAFT AVAILABLE. N*5 12/1/953:1300PM 12/2/953:13:00PM 1 Da_0HoL_s 43

14 !E55 AIRCRAFT RETURN T RANSIT TO U S. 1 DAY 12/1/95 3:13 00 PM , 12/2195 3:13:00 PM Day_ 0 Hours 127

15 E54 BW2'S EQUIPMENT AND PERSONNEL IN PLACE @ N*7 12/1/9531300PM 12/21353:1300PM 1Days0Houfs -56

16E53 ASSEMBLE UNIT, SDAYS 12/1/953:1300PM 12/4/953:13:00PM 3Days0Hou_s -56

171E52 UNLOADBW2.1 DAY. N+4 12/11953:13:00PM 1212/953:13:00PM Days0Hows 127

18 E51 TRANSIT TIME TO KOREA, 1DAY 12/1/9531300PM'12/2/953:13:OOPM Day_0Hou¢_ 127

13 ES0 LOADBOMBERWINGIt2.1DAY. EASTCOAST. N+2 12/1/9531300PM 1212/953:13:00PM 1Day_OHoL_ 11
IIII

I¢.I I

Figure 8 - List Pane

An event may be edited by double clicking on it. This brings up the event dialog described

in "editing events".

6.3 Gantt Chart Pane

The Gantt Chart pane displays all of the events in a traditional gantt chart view (see figure

9). Starting times and ending times are shown on the timescale. The timescale for the gantt

chart may be adjusted using the View menu.

Events may be edited by clicking on the gantt chart bar. The event times may be modified

by dragging the bar with the mouse. The event duration may be changed by dragging on

either the bar starting or ending symbol with the mouse,

Normal Event

(green)

Unschedulable

Event (red)

Figure 9 - Gantt Chart Pane

19



Guess User's Guide

Events meeting the scheduling constraints are shown in green; events not meeting the

satisfaction criteria are shown in red and have a different starting and ending symbol than

do events that satisfy the scheduling constraints. Events that have resource scheduling

conflicts are always shown in red; the user can specify minimum satisfaction levels below

which events are flagged as unschedulable using the Satisfaction Level menu item.

Rio Schedule Windows Hel

Satisfaction Level..,

View by Quarter

View by Month

View by Day

-/View by Hour

Sod DyNamo

So_ By Stad lime

¢ Unsorted

l_llTIntt _

15 Minutes

30 Minutes

Figure 10 - View Menu

The gantt chart view can be customized using the

view menu, Selecting "Satisfaction Level..."

produces a dialog.

This dialog allows the minimum satisfaction level

below which events are flagged in red to be set.

Checking the "Color Change on Low Satisfaction

Enabled" causes the color of the bar to change to

red when the event satisfaction drops below this

level. If this box is not checked then the bar color

changes to red only when the event has resource constraints which are not satisfied. The

minimum satisfaction must be in the range of-127 to 127.

_m
i Set MinimumSzti,qfaction

The user is given the option to change the

timescale as appropriate. The timescale may be

displayed as quarters, months, days, hours and

minutes. The minutes option has a further choice

of interval defined by a sub-menu.

Events may also be sorted either alphabetically

or by order of their start date by checking the

appropriate menu item on the View menu. The

gantt chart will be automatically resorted after an

item is checked.

unsorted order.

• ' Saklld_F._t_

[5o H=i=_

Figure 11 - Satisfaction Dialog

Selecting unsorted will cause the gantt chart to resort to its original

6.4 Adding�Editing Events

When starting a new schedule an World event should be first created. This allows

specifying the duration of the schedule and constraining all of the events to ocurr within

the specified duration. This event should be created as a locked event to prevent it from

being shifted in time with no constraints or resources attached to it.

20



Guess User's Guide

Events may be added to the schedule using

the New Event menu item under the Schedule

menu. Existing events may be edited by

double clicking anywhere along the event's

row in the gantt chart or event list. Both

actions bring up the event dialog as shown in

figure 12.

Along the top of the dialog is a set of tabs
These allow access to all of the event

constraints. A unique name without blanks
must be entered for the event name. This

. ,- . ='7 ,

=i.=m=.

I AIBEBAIEI REIUHN IH/_I$1| I0 US. 1 DAy

Sh_ Time _ Time

IIZIOIPJ5 - 15.13 117JU2155 - 15L1_ I 1 d,_= -0g.00

EE3

Figure 12 - Event Dialog

should be something meaningful to the user as this is the primary identification used for

the event. The priority of the event may be set from 1 to 10. Ten is the highest priority and

one is the lowest. The scheduling engine will attempt to resolve the constraints of high

priority events first before considering lower priority events.

Pressing the OK button incorporates the event and all modifications made to it into the

schedule, removes the dialog box, and updates the schedule views. Pressing Apply

includes the modifications into the schedule and updates the displays but does not remove

the dialog box making it available for further editing. Pressing Cancel removes the dialog

and nullifies the effect on any edits made. If "New Event" has been chosen then the event
is not added to the schedule.

6.4.1 Editing the Event

A short description of the event may also be entered if desired. Start time, end time and
duration can also be entered for the event. Start and end times are entered in the format

mm/dd/yy HHMM where mm is the month, dd is the day of the month, yy is either the

two or four digit year, HH is the hour (on a 24 hr clock) and MM is the minute. Duration

is entered in the format dd days - HH:MM. As these variables are entered Guess

automatically recalculates the remaining fields as necessary.

A locked event is an event that is fixed in time and cannot be rescheduled by Guess. This

class of event is used for milestone events whose time is fixed and is used as a constraint

for other events. Checking the locked event box makes this a locked event.

21



Guess User's Guide

="'_'_ _ , _ /
Io, 121 I oE61.r.AsE.orcn_ _ Navigate

IG'"_=''h" _ _ _ C--_. Constraints

_ Create a newconstraint

Figure 13 - Editing Constraints

Using the tab control at the top of

the dialog the user can readily switch

between editing the event itself, the

event's constraints and resource

usage. If this is the only event in the

schedule then the constraint tab will

be disabled as there exist no events

with which to constrain the current

event. Similarly if no resources exist,
then the resource tab will be

disabled.

6.4.2 Editing the Constraints

Clicking on the constraint tab changes the dialog display to show the constraints
associated with the event If there are no constraints associated with the event then all of

the controls with the exception of the "new" button will be disabled. To add a new

constraint click on the "new" button and a blank constraint form with all of the applicable

controls enabled.

Checking the delete box will cause the constraint to be deleted after either OK or Apply is

selected. For events with multiple constraints, the additional constraints may be located

using the constraint navigation arrows located on the right side of the dialog box.

The constraining event is the event that provides the constraint to this event. It must be an

event that already exists in the schedule. The weight can be adjusted to reflect the

importance of the constraint. When scheduling, Guess uses these weights to give more

emphasis towards satisfying constraints having higher weights than those having lower

weights. A short description of the constraint can be entered in the description box.

The type of constraint must be entered in the "Type" dropdown list on the left side of the

dialog. The types of constraints supported by Guess are as follows:

Type
After

Before

Begin With

During
End With

Meta

Constraint Types
Description
This event must occur after the constraining event.

This event must occur before the constraining event

This event must begin at the same time that the constraining event

begins.
This event must occur at some point during the constraining event.

This event must end at the same time as the constraining event.

This allows more complex constraints to be built between two

events. See text for explanation.

22



Guess User's Guide

If a World event has been created (see section 6.4), then a "during" constraint needs to be

created for each event forcing the event to occur within the world event. Constraints

establish the relationships between the events in the schedule.

As an example, let us try to schedule a vacation trip. The first step is to set up a world

event to define the time period during which we must complete all of the activities

associated with the trip. Let us say that we wish our trip and all activities associated with

the trip to be completed within the month of June. The world event would then be entered

into the schedule with a start date of June 1 and an end date of June 30. This event would

be a locked event since its endpoints are fixed and it is not permissible for Guess to

reschedule the event. This event would not have any constraints as it is not dependent

upon any other event. Each subsequent event added to the schedule would be tied to this

world event using a during constraint.

The first event might be to pack luggage. Therefore an event is created which we entitle

pack_luggage The next event would be to travel to the airport. We name this event

depart to airport. Obviously, the luggage must be packed before departure to the airport.

Therefore, we add a constraint to the "pack luggage" event to the effect that it must come

before the "depart to airport" event. To do this, we double click on the "pack luggage"

event in the gantt chart pane Next we select the Coustramts tab to go to the Constraint

dialog for the event. Since there are no constraints as yet entered for this event all of the

controls with the exception of the New button and the OK, Apply and ('aucel buttons on

the bottom are active.

To create a new constraint button, we click on the New button. This activates all of the

controls on the form. Since this constraint must occur before depart to airport we select

"Before" from the dropdown list associated with the type field in the upper left corner of

the dialog, depart to airport is entered as the constraining event. The weight field allows

for an entry of I to 100 with 1 being the least weight and 100 being the most weight. For

this particular constraint we choose a midrange weight of 50

Now we must add the "during" constraint for the world event. To do so, we again click on

the New button to add another constraint. "During" is chosen as the constraint type and

"World" is chosen as the constraining event (We can in reality name the world event

anything we choose but for clarity we are calling it World.). We can now click OK to add

the constraint and dismiss the dialog.

To make the constraints symmetric and to produce a tighter schedule, an "after" constraint

should be associated with the depart to airport event. We follow the same procedure as

before to add a constraint to the depart to airport event. We double click on the

depart to airport event in the gantt chart and then select the Constraint tab. This time we

select "after" as the constraint type and enter "pack_luggage" as the constraining event.

23



Guess User's Guide

0 day# - 00:00 g

Relationship

Offsetbetween

events

Endpoint of

Constraining Event

Figure 14 - Entering a
Meta Constraint

the constrained event and the constraining

Meta constraints allow more complex

relationships to be developed between events.

When meta is chosen as the constraint type the

group of controls labeled "Meta Constraint" is

made active. The endpoints used to establish

the constraining relationship for both the

constrained event (the event being edited) and

the constraining event must be chosen.

In addition, a relationship must be chosen. This

can be either greater than, less than, or equal..

A time offset between the selected endpoints of
event should also be chosen.

Using the trip scheduling example of the previous section, it is easy to demonstrate the use

of a meta constraint For example, suppose we needed a passport for our trip. Since it

takes two weeks to obtain the document from the passport office, we must send the

application in at least two weeks before we depart to the airport. Therefore, we can show

this relationship on the schedule by adding a meta constraint to the

sendpassport_application event. The beginning of this event must occur two weeks

before the beginning of the depart to airport event. Going to the Constraint tab of the

send_passport_application event, we select meta constraint as the constraint type. This

activates the meta constraint controls on the left hand side of the dialog. Begin is selected

in the top box since the beginning of this event must occur two weeks before

depart to airport.

The beginning of the send_passport_application must be less than the (before) the

depart to airport event so less than is chosen as the relationship. Since the relationship is

from the beginning of the constrained event (send_passport_application) to the beginning

of the constraining event (depart to airport) we select "Begin" in the third box. The offset

is 14 days (two weeks).

24



Guess User's Guide

6.4.3 Editing the Resource Constraints

m

[ cn,_ II-a_DsG7P_ PuAnes_=zme-w-I_ . ':]

I

Figure 15 - Editing Resource
Constraints

The next step is to edit the resource constraints.

This is accessed by clicking on the resource tab in

the event dialog (see figure 15). If there is more

than one resource associated with the event, then

the navigation arrows on the right of the dialog

may be used to access the other resource

constraints in the same way that they are used in
the constraint tab.

The resource name needs to be entered on the

first line The resource must already exist in the

schedule, otherwise, Guess will give an error

message. You may enter a short description of the

constraint and indicate the resource usage by the event.

If no resource constraints exist for an event the dialog will appear with all of the controls

disabled except for the "new" button A new resource constraint is created by clicking on

the new button. This activates the controls and allows entry of a new resource constraint.

The "new" button may be used at any time to add a new resource constraint.

Checking the delete box will cause the resource constraint to be deleted once either Apply
or OK is selected.

6.5 Resources

The resource pane is shown as a set of five resource graphs showing resource usage over

time. The time interval is the schedule makespan, i.e the time period between the start of

the earliest event in the schedule to the time at which the last event is completed.
Resource Usage

as a function of

/ time Maximum Resource

Figure 16 - Resource Graph

The graph shows the resource usage as a percentage of the maximum available resource

The maximum available resource is shown as a dotted red line. Five graphs are shown in

the resource pane The pane may be scrolled to see all of the resources on the schedule

25



Guess User's Guide

Resources may be added to the schedule by either selecting "New

Resource" from the "Schedule" menu bar. Alternatively, the fight

mouse button may be clicked over the resource pane to bring up a

popup menu. This brings up a dialog for adding a new resource (see

figure 18).

The dialog is the same for both adding a new resource and editing an

existing resource. Resources may be of two types - binary and

Figure 17 -
Resource

Menu

depletable. Binary resources represent a fixed resource which may be utilized but once the

utilization is finished the resource is available to the same extent that it was before being

utilized. Typical examples of this might be scheduling personnel in performing a given

task. The personnel would be utilized on a particular task; once the task was complete

then they would be fully available

Resource

.-= I

T.tpllt : Ini!id Value:

c o_

I oK /I ,I

Figure 18 - Resource Dialog

Depletable resources, by contrast, are used up by the

task and must be explicitly replenished. The usage

specified in the dialog box is their initial starting
amount.. Events are assumed to consume a resource

at a uniform rate during the event duration.

Replenishment of the resource can be indicated by

entering a negative value for resource usage in the

resource constraint dialog (see editing resource

constraints).

A resource cannot be changed from binary to

depletable or vice-versa once it has been created. A

resource may be deleted by clicking on the resource

in the resource graph with the right mouse button. This brings up a popup menu (see

figure 17) with delete as one of the choices. Guess will then ask for confirmation of the

deletion and if an affirmative answer is given will proceed to delete the resource.

6.6 Scheduling

View Windows Help

New Resource

Rcschedulc

Resource Conflicts

Statistics...

v' Suggestion Tabulator

Hill Climbing

Genetic Algorithm

Figure 19 - Scheduling Methods

Guess supports three different algorithms for

scheduling events, They are the suggestion

tabulator, hill climbing and genetic algorithm

approaches. The suggestion tabulator is a linear

approach, is very fast and works well for many

types of problems where the constraint structure is

not too complex. Hill climbing is a more complex

algorithm and can provide solutions in some

instances where the suggestion tabulator cannot

provide very satisfactory solutions. Genetic

algorithm tends to be time consuming but because

26



Guess User's Guide

of its highly non-linear approach and probabilistic methods can often come up with novel

solutions to the scheduling problem.

The choice of methods is made through the "Schedule" menu (see figure 19). The

available solution techniques are shown on the bottom of the menu. The currently

selected algorithm is shown with a check. By default, suggestion tabulator is selected.

The method desired is changed by selecting the menu item associated with the algorithm

desired.

Guess will reschedule the events according to the algorithm selected when the reschedule

menu item is selected. The wait cursor will appear as Guess recalculates the schedule.

The schedule views will then redraw reflecting the new schedule. Guess will reschedule

events even though the resultant schedule may have some unscheduled events. These

events will be rescheduled to make them as satisfied as the Guess scheduling engine can.

The rescheduled event may however still be unschedulable. In that case the user has

recourse to either try another scheduling algorithm which may give better results under

the circumstances, examining the conflicts and modifying the constraints to allow the

schedule to be satisfied or manually reschedule the event by dragging the gantt bars on

the gantt chart display.

Rescheduling takes the latest calculated data as a starting point. This allows one to use

different scheduling methods for stepwise refinement. One might start out using the

suggestion tabulator and then refine the results obtained by choosing genetic algorithm as

the scheduling method next. To compare schedules produced by different algorithms, the

user should load a schedule using the "File Open" command, select the first scheduling

method to be used and then click on "Reschedule". The next step is to use "Save As" to

save the results to another file. Then the original data is loaded in another window using

"File Open", another algorithm selected, and reschedule clicked. The user can then

compare the resultant schedules.

Choosing "Statistics ..." from the

Schedule menu brings up a statistics

dialog allowing the user to check on

the effectiveness of the resulting
schedule. The total satisfaction is the

actual satisfaction of the calculated

schedule as a percentage of the
maximum theoretical schedule

satisfaction. The schedule makespan

is the time interval from the time the

first event starts to the time that the Figure 20 - Statistics Dialog

last event finishes. The number of

unschedulable events is the number of events that could not be scheduled due to resource

constraints being violated.

27



Guess User's Guide

i E20

i 1:21
E22

IE23
[30
[4fl

Figure 21 -
Resource Conflicts

If there are resource conflicts, the "Resource Conflicts" menu item

in the Schedule menu appears enabled. Selecting this item brings

up a dialog showing a list of events that are subject to resource

constraints. This allows the user to easily see which events have

resource conflicts at a glance

The events having resource constraints are also highlighted on the

gantt chart in red Individual satisfaction levels for each event are

shown in the list pane located to the left of the gantt chart

6.7

File Save As

6.8

Saving Your Work

If you close a schedule and

have made any changes to it,

Guess always prompts you to

save it. In addition, you can

select either "Save" or "Save

As" from the File menu

"Save" will save your work in

the same file that you

originally opened. If you have

not previously saved the file

then the File Save dialog box

will appear. This dialog will

I d:, ....... I I

I c=,,2_,_h L..I' _I_ °"_

[ iltstl .tch
] iftst2.razh r" _,_dl_]
] iltzt3.tch

Li_ F'JN oi I.,-,im:. :D_

I I " d: lti

Figure 22 - File Save As Dialog

also appear if you select "Save
As". A file can be selected using this dialog box in the same manner as the file open

dialog. Normally Guess saves the events unsorted in the order in which they were entered.

Checking the "Save Sorted" box overrides this behavior and forces Guess to save the

events in whatever order was selected in the "View" menu.

Printing the results

Choosing "Print Setup" from the File menu allows printer, paper orientation and size to be

selected Guess provides a print preview mode also available from the File menu that

allows previewing the document on the screen as it would look on the printer prior to

making a hard copy

28



Guess User's Guide

I Print
I

I .I
S_,l_ion

C_
E,=,¢ 1I_----- lr_ I

I-c__

Printing is done by selecting the "Print"

menu item from the File menu. This

brings up a dialog allowing selection of

the number of copies and the printer

resolution. The user can choose to only

print a section of the schedule by

choosing the Pages button and entering

a range of pages to be printed. Pressing

OK causes the schedule to be printed.

Figure 23 - Print Dialog

29



Guess User's Guide

7.0 Abbreviations And Acronyms

All abbreviations are defined when they first appear in the text. An alphabetized list of the

definitions for abbreviations and acronyms used in this document is defined here.

AI

AMEC

AMP

API

DDE

DLL

GUESS

GUI

IEEE

ISIS

NASA

NASA-STD-

2100-91

ODBC

PARR

Sugtab

SBIR

VBX

Artificial Intelligence

American Minority Engineering Corporation

Automated Manifest Planner

Application Programming Interface

Dynamic Data Exchange

Dynamic Link Libraries

Generically Used Expert Scheduling System

Graphical User Interface

Institute for Electrical and Electronics Engineers

International Society for Intelligent Systems

National Aeronautics and Space Administration

National Aeronautics and Space Administration

Software Documentation Standard Software

Engineering Program

Open Database Connectivity

Planning and Resource Reasoning Shell

Suggestion Tabulator

Small Business Innovative Research

Visual Basic Xtensions

30



Guess User's Guide

8.0 Appendices

Appendix I

This appendix lists the function calls that a custom resource model library must support.

It gives the function prototype, the arguments, and the value returned by the function.

This does not inhibit the resource model by containing as many private functions as is

necessary. Because the interface is defined in terms of a standard Windows API interface

it does not presuppose the use of a specific language (e.g. C++) or a specific compiler

vendor. It may be written using any tools that support writing 16 bit Windows 3.1 DLL's.

31



Guess User's Guide

 ii   ii       iii    !i!     i   i   i!i   ! i i!i i iiiiiiiiii! i! !i iiii iiiiiiiiiiiiiii!i i iiiiiiiiiiiiiiii iiiiiiiiii !iiiiiiiiiiiiiiiii
ResourcelD Resource Identifier for use by GUESS. Resource ID is

used in to get resource values during specific time

periods from GUESS.

str String identifying additional parameters required to

properly initialize the saved resource. This string is the
same string that is output by the WriteResource
function.

Returns An identifier with significance to the library. Identifier is
opaque to GUESS and usually points to the structure

representing the resource within the library.

i!i!  i !ii i      i!|i  ii         |iiiiiiiiiiiiiiii!iiiiiiiiiiiiiiiiiiii iii!iiiiiiiii!iiiiiiiiiii!iiiiiiiiiiiiii!i!iiiiiii!ii!ill
ResourcelD Resource identifier returned by library from a call to

either CreateResource or CreateNewResource.

id The id returned from CreateResource or

CreateNewResource

StartTime Starting time for interval that resource value is being

queried.

EndTime Ending time for interval that resource value is being

queried.
InitialValue The initial value of the resource at the StartTime.

Step This is the step time to be used. This allows GUESS to

determine a step time which balances computational

accuracy with speed.

Usage A Usage function that the library iteratively calls to
determine resource usage for each time slice within the

time range sought. See ResourceFunction description

for parameters.
Returns Returns the value of the resource at the EndTime

specified.

:::::::.'.:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ',:: :::::::::::"":"::::i:i::'.!:i:::!::'::':!_'.:i:i:i:i:::;"':::"'"::i:::i:i:i:::i'.i:i:i:E:ii_ i::":i!i" i:::i:!:i:::i:i:i:::i:iF"":::'::i:i:::i:i::::":''""i:i:::i:::!:i:::i;i Ei'i=::::!i:!:::ii:::i:ii i''' q_:::i:!::::_`_`_`_`_i:i:i:!``::!:i:::i:_::i:i:_:_:_:_:i:i:i:;:_:_:_:!:_``_:i:i:i:i:i:

id The resource id passed in as the ResourcelD

argument to either CreateResource or
CreateNewResource.

StartTime The starting time for collecting the resource usage.

Typically the library calls this function repeatedly with
StartTime incrementing by StepTime each time.

EndTime This is the ending time for the time slice over which the
resource value is desired.

32



Guess User's Guide

Returns The resource usage over the specified time interval.

GUESS calculates by figuring which events occur

during this interval and what use they make of this
resource.

iii_!_ i _.._.,.R__ i_i_.._. ,._ i i!d:,_ i i_Ri:_:i!:!ii:i:ii;;T':_;:ii ::! ;;i:'::i:i':i::'!ii:i=ii:;':':iii:i:ii_:i:i:iii:i:il:i:;i:;:i:i:i:i,,iii:i:iii i :; ; ii,,i:ili:i:i:ili:::i',iii:' :i:i:'ii i i ';;':i i';;:ii::::::;;:i:i:i:i;'!_iiiii:i:iii:i:ii_i i':_iii:!:i_i:i:iiiii_...i_ i_iii_`;``i:i:iii_iii:i:i._!:!:!_i:i::_i:ii!_i_;_iii:i::ii:i:i:ii;_i;;i_!i`_m_iiiii_i_i!!iiiiiiiiiiiiiiii_iiiiiiiiiiiiiiii_iii_iiiii_iiii!E iiii i ii i ii i ii i ii!i_!! !il i ii i ii iliil i il ii iiiiiiiiiiiiiii:,!iiiiii iiiiiiii ii !

id The resource id returned by either CreateResource or
CreateNewResource.

str A string in which to write the character string. The

library is responsible for the format of this string. It is

designed for performing file saves and will be read in

again by CreateResource when the file is re-opened

maxlen The maximum length of the str string. The library is

responsible to assure that the size of the string

including the terminating NULL does not exceed this

length.

Returns Character string giving a human readable name for the
custom resource model.

Returns Character string giving a description of the resource

mode. J

33



Report Documentation

1. Report No. I 2. Govemment Accession No.
i

User's Guide-GUESS i.

4. T'rtle and Subtitle

GUESS User's Guide

7. Author(s)

Jay Liebowitz, Vijaya Krishnamurthy, Ira

9. Perform_ O_an_t_ Name a_ Address

American Minority Engineering Corporation

(AMEC)

10422 Armory Avenue, P.O. Box 509

NASA Goddard Space Flight Center

Greenbelt, Maryland 20771

Page

Rodens

3. Recipient's Catalog No.

5. Repo_ Data

March 31, 1996

6. Performing Organization Code

8. Performing Organization Report No.

10. Work Unit No.

11. Contract or Grant No.

NAS5-38062

13. Type of Report and Period Covered

Final; 4/194-3/31/96

14. Sponsoring Agency Code

15. Supplementary Notes

16. Abstract

This is the Version 1.0 of the GUESS UserJs

Used Expert Scheduling System).

Guide_Gener{call_

17. Key W_ (Sugge_ed by Author(s))

expert systems, scheduling,

scheduling systems,

scheduling

"_.S_urityCla_ff.(ofthisrepo_}

Unclassified

NASA FORM 1626 OCT 86

generi

intelligent

18. D_ibution Sm_nt

Unclassified-Limited

S_ufiwCla_ff.(ofthb_)

Unclassified

21. No. of pages 1

[33
22. Price


